
Interatomic potentials for the Be–C–H system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 445002

(http://iopscience.iop.org/0953-8984/21/44/445002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 05:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 445002 (16pp) doi:10.1088/0953-8984/21/44/445002

Interatomic potentials for the Be–C–H
system
C Björkas1, N Juslin1, H Timko1, K Vörtler1, K Nordlund1,
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Abstract
Analytical bond-order potentials for beryllium, beryllium carbide and beryllium hydride are
presented. The reactive nature of the formalism makes the potentials suitable for simulations of
non-equilibrium processes such as plasma–wall interactions in fusion reactors. The Be and
Be–C potentials were fitted to ab initio calculations as well as to experimental data of several
different atomic configurations and Be–H molecule and defect data were used in determining
the Be–H parameter set. Among other tests, sputtering, melting and quenching simulations
were performed in order to check the transferability of the potentials. The antifluorite Be2C
structure is well described by the Be–C potential and the hydrocarbon interactions are modelled
by the established Brenner potentials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the objectives of the fusion test reactor ITER is
to demonstrate prolonged fusion power production in a
deuterium–tritium plasma [1]. The selection of plasma facing
materials (PFMs) is a key issue for this objective, and multiple
factors have to be taken into account. These include the
lifetime of the materials (shortened by erosion and thermal
fatigue, for example), safety requirements (tritium retention
and activation) and engineering aspects. Due to the ITER
tokamak plasma design, the thermal load and particle flux are
divided between different areas in the reactor. Consequently,
the material requirements vary with location; the current choice
for first wall material is beryllium and the diverter region is to
be composed of carbon-fibre-composites (CFC) (strike point
tiles) and tungsten (baffle and dome) [2, 3].

The choice of Be is motivated by its low Z (which means
a lower energy loss due to plasma contamination), its effective
oxygen gettering ability and its low tritium inventory. The
desirable properties of CFCs are a high melting point, a good
thermal shock resistance and an ability to withstand high heat

fluxes. The advantages of tungsten, on the other hand, are its
low tritium retention and low sputtering yield [3].

The understanding of the retention and recycling of
hydrogen isotopes in Be is of particular interest [4], since this
will give insight into the undesired trapping of tritium and also
into the plasma cooling effect of the release of elements heavier
than He.

Another issue that must be understood is the formation
of mixed materials, since sputtering and redeposition will
unavoidably lead to the creation of surfaces which are made
up of a mixture of the three PFMs [5]. The properties of
these mixed materials can differ strongly from those of their
constituents; hence, predicting their behaviour is considered to
be crucial for the reactor operation.

When exploring the consequences of mixed materials and
the influence of H isotopes on PFMs, realistic experiments
with ITER relevant conditions are preferred but not yet
feasible. However, computer simulation is an excellent tool,
especially the sub-part of this field, namely the simulation
technique based on molecular dynamics (MD), which allows
for modelling of tens of millions of atoms. The reliability
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of MD is dependent on the accuracy of the interatomic force
interactions used in the simulations; hence great efforts must be
made in developing proper interaction models, i.e. potentials.

The potential needed for simulating the various processes
of interest has to be able to describe variations of the local
chemical environment, such as bond-breaking, yet at the same
time it must be computationally efficient. Meeting these
demands are the so-called analytical bond-order potentials
(ABOP), which were initially developed by Tersoff [6] to
describe covalent solids but shown by Brenner and Able [7, 8]
to be extendable to metals. This potential form has
been applied to numerous systems, e.g. to the compound
semiconductors Ga–N [9], Ga–As [10], Si–C [11] and Zn–
O [11], to the metal–carbon systems Pt–C [8], W–C [12], to
hydrocarbons [7] and to the metal Fe [13].

A few potentials for elemental Be already exist, e.g. a
cluster potential by Blaisten-Barojas et al [14] (here denoted
BB), an embedded atom method (EAM) potential by Igarashi
et al [15] (called IGA), the modified embedded atom method
(MEAM) potentials of Baskes et al [16] (BAS) and Hu et al
[17] (HU), and a pure pair potential by Ueda et al [18] (U2).
But to enable modelling of the whole Be–C–W–H system,
potentials compatible with the previously developed W-C–H
ones [12] were parametrized in this work. This was done
by applying the ABOP formalism on Be, Be–C and Be–H
interactions, rendering it possible to join to the earlier C–C and
C–H potentials [7, 19]. A Be–W potential will be presented
elsewhere.

The paper is organized as follows. In section 2 we
describe the potential formalism and how we construct the
fitting database (this includes a description of our calculations
based on the density functional theory (DFT)) and give a
description of the fitting methodology. In section 3 we present
and discuss the results of the DFT calculations and of the fitting
of each potential (pure Be, Be–C and Be–H separately). In
section 4 we present our Be self-sputtering simulations. In
section 5 we conclude our work.

2. Method

2.1. Potential formalism

The formalism used originates from the concept of bond order
proposed by Pauling [20] and it has been shown [8] to resemble
both the tight-binding [21] and the EAM schemes [22, 23]. It
has been described extensively elsewhere (in e.g. [8–10]), so
only a brief overview will be given in what follows.

The total energy E of the system is expressed as a sum
over individual bond energies, as

E =
∑

i> j

f c
i j(ri j )

[
V R

i j (ri j) − bi j + b ji

2︸ ︷︷ ︸
bi j

V A
i j (ri j)

]
. (1)

V R
i j and V A

i j are the repulsive and attractive terms, respectively.

These are pair potentials of a Morse-like form:

V R(r) = D0

S − 1
exp(−β

√
2S(r − r0)),

V A(r) = SD0

S − 1
exp(−β

√
2/S(r − r0)),

(2)

where D0 and r0 are the bond energy and length of the dimer
molecule, respectively, and S is an adjustable parameter. β is
also related to the dimer, since this can be determined from its
ground state oscillation frequency, according to

β = k
2πc√
2D0/μ

, (3)

where k is the wavenumber and μ the reduced mass of the
dimer.

Through the cutoff function f c
i j the interaction range is

restricted:

f c(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1, r � R − D,

1

2
− 1

2
sin

(π

2
(r − R)/D

)
, |R − r | � D,

0, r � R + D.
(4)

Here, R and D are parameters determining the cutoff range
and interval. bi j in equation (1) is the bond-order term, which
includes three-body interactions and angularity,

bi j = (1 + χi j)
− 1

2 , (5)

where,

χi j =
∑

k( �=i, j)

f c
ik(rik)gik(θi jk)ωi jke2αi j k (ri j −rik ). (6)

αi jk , ωi jk and θi jk are fitting parameters. αi jk corresponds
to the 2μik parameter of earlier potentials [8, 10, 9], and
ωi jk is added to make the hydrocarbon potential of Brenner
compatible with the present formalism, an approach also
adopted in [12]. The angular function gik is of the form

g(θ) = γ

(
1 + c2

d2
− c2

d2 + (h + cos θ)2

)
, (7)

where γ , c, d and h are adjustable parameters.

2.2. Constructing the fitting database

Filling the fitting database with properties of the Be
equilibrium structure is easy, since the available experimental
data on hexagonally close-packed (hcp) Be are comprehensive.
Experimental data on Be–C are, on the other hand, very scarce
due to its chemical instability, and to our knowledge no Be–
C phase diagram exists. Moreover, to ensure that a potential
is transferable, the fitting database has to cover structures of
different atomic coordinations. For these reasons, ab initio
calculations of several Be and Be–C structures were carried
out within the DFT framework. The database was constructed
to include cohesive energies, lattice constants, bulk moduli,
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pressure derivatives of the bulk modulus, and also elastic
constants for the ground state structures.

The DFT calculations used the projector augmented
wave (PAW) method [24] in a plane-wave basis set as
implemented in the Vienna ab initio simulation package
(VASP) [25–29]. Pseudopotentials employing the local density
approximation (LDA) with the Ceperley–Alder exchange
correlation as parametrized by Perdew and Zunger [30], and
the generalized gradient approximation (GGA) corrections
developed by Perdew and Wang [31, 32] were used. These
were taken from the database supplied with VASP. In the
metallic pseudopotentials for Be the s and p states, respectively,
were treated as valence states.

The sampling of k points in the Brillouin zone was done
with the Monkhorst–Pack scheme [33]. The integration over
the Brillouin zone was carried out with the linear tetrahedron
method of Blöchl et al [34].

The calculations for the Be dimer used a supercell with a
border length of 13 Å. The energy cutoff for the plane waves
was 310 eV. In the calculations of bulk-like Be structures the
energy cutoff was 400 eV, except for diamond where 500 eV
was used. In most cases 11 × 11 × 11 k points were used. For
the hcp and graphene lattices (the latter with a fixed interplanar
separation of 10 Å) a finer grid of at least 13×13×13 k points
was used. In these cases the reciprocal lattice was centred on
the 	 point. The geometries as well as the internal degrees of
freedom were always fully relaxed. The calculations used an
accuracy of the order of 10−5 eV = 0.01 meV/atom.

In the Be–C case, properties of the theoretical stoichiomet-
ric Be–C structures B1 (NaCl), B2 (CsCl) and the zinc blende
(ZnS), as well as for the dimer and the only experimentally ob-
served phase, the antifluorite Be2C phase, were calculated. The
calculations for the dimer used a supercell with a border length
of 11 Å. The energy cutoff for the plane waves was 400 eV.
In the calculations of bulk-like structures the energy cutoff was
700 eV, and 15 × 15 × 15 k points were used. Again, the ge-
ometries as well as the internal degrees of freedom were always
fully relaxed and the calculations used an accuracy of the order
of 10−4 eV = 0.1 meV/atom.

To further test the potentials we derived the phonon
dispersion curves for hcp-Be in the harmonic approximation.
The same methods as when constructing the fitting database
were used, i.e. the calculations were carried out within the
GGA using the PAW method as implemented in the VASP
package. The phonon dispersion curves were obtained using
the method of finite displacements and the PHON code for
post-processing [35]. For hcp-Be (and also for antifluorite
Be2C) the force constant matrix was computed using a 5×5×5
supercell, a 5×5×5 	-centred k-point mesh and a plane-wave
cutoff energy of 390 eV.

2.3. Fitting methodology

The following general methodology was adopted when fitting
a potential. Once an extensive fitting database was constructed,
a search for potential parameters that reproduce as many
properties as possible was started. When a satisfactory set was
found, the potential was tested against properties not included

in the fitting (for instance defect properties and melting point),
and if not performing adequately, a new parameter set was
investigated. Several iterations were often necessary and
compromises were unavoidable.

2.3.1. Beryllium. At ambient conditions beryllium is a metal
with a hcp structure. The value of its c/a-ratio is much smaller
than the ideal hcp one, 1.5677 compared to 1.63 [36]. At high
pressures and at zero pressures just before melting it is seen to
transform into the body centred cubic structure [37, 38]. Ab
initio calculations also suggest that a face centred cubic (fcc)
phase exists at high temperatures and pressures [39].

If the interactions are restricted only to nearest neighbours,
the energy per bond, Eb, as a function of the equilibrium
bonding rb distance follows the Pauling relation

Eb = −D0 e−β
√

2S(rb−r0), (8)

with the same parameters as described in section 2.1. This
means that the dimer is always the most strongly bonded and
has the shortest bond length, and higher coordinated structures
have weaker bonds. However, owing to its completely filled
subshells (1s22s2), the beryllium dimer is very loosely bound
and has a very large bond length and cannot be included in
this fitting scheme. Therefore, the β parameter could not be
determined from (3) but instead was fitted together with the
parameter S to the slope of the Pauling relation from the other
phases.

According to our DFT calculations, the body centred
cubic (bcc) structure (which has eight nearest neighbours,
Z = 8) does not follow this relation either, since its energy
per bond is higher than the energy per bond of the simple
cubic (sc) structure (Z = 6). In order to account for this
behaviour, second nearest neighbour (2nn) interactions were
allowed when fitting the bcc structure. This also helps to
prevent problems related to a steep cutoff, since the difference
between the bcc first nearest neighbour (1nn) and 2nn distance
is only about 14%.

Two different Be parameter sets were developed. The first
set, Be–Be I, was constructed for pure Be interactions, whereas
the second one, Be–Be II, describes the Be–Be interactions
when used together with the Be–C potential. The different
parameter sets are found in table 1, together with the Be–C,
Be–H and hydrocarbon sets.

2.3.2. Be–C. Only one intermediate phase of beryllium
carbon has been reported [36]. This Be2C is ionic and its
structure is cubic antifluorite, which can be described as carbon
atoms occupying fcc sites and beryllium atoms forming a cubic
sublattice inside. In this way, each C atom is surrounded by
eight Be atoms. The distance between the closest Be atoms
is only a0/2, which made it impossible to fit Be–Be and Be–
C interactions independently. The potential fitted to pure Be
(Be–Be I) was not suitable as such for Be–Be interactions in
Be2C; hence, a second Be version (Be–Be II) was constructed
as mentioned above. With this version, properties such as the
cohesive energy of hcp-Be could not be exactly reproduced.

The few experiments focusing on Be2C have determined
its structural and electronic properties, but as far as other
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Table 1. Parameter sets for the different interaction types. The Be–Be II set is to be used together with the Be–C potential. The C–C, H–H,
H–C and C–H sets are taken from [7]. The αi jk parameter is zero except for the hydrocarbons for which it equals α = 4.0, (but αCCC = 0) and
αBeBeBe = 0.85 within the Be–Be I potential. ωCCH = 0.339 46, ωCHC = 2.945 86, ωHHC = 4.544 15, ωHCH = 0.220 06 and all other ω = 1.0.

Be–Be I Be–Be II C–C H–H Be–C Be–H I Be–H II H–C C–H

D0 (eV) 1.17 1.035 71 6.0 4.7509 3.909 3330 2.6 2.6 3.642 3.6422
r0 (Å) 2.035 2.078 80 1.39 0.741 44 1.724 299 1.338 1.338 1.1199 1.1199

β (Å
−1

) 1.28 1.3 2.1 1.9436 1.586 761 2.3 2.2 1.9583 1.9583
S 3.111 67 1.889 82 1.22 2.3432 2.766 724 3.0 2.5 1.690 77 1.690 77
γ 4.787 01 × 10−7 8.195 87 × 10−7 2.0813 × 10−4 12.33 3.001 84 × 10−5 0.14 0.19 12.33 2.0813 × 10−4

c 32.327 97 89.3894 330.0 0.0 57.004 094 0.0057 0.0057 0.0 330.0
d 0.052 65 0.274 43 3.5 1.0 0.358 304 0.002 0.004 1.0 3.5
h 0.826 579 99 0.760 6934 1.0 1.0 0.559 9960 1.0 1.0 1.0 1.0
R (Å) 2.685 2.535 1.85 1.40 2.60 1.75 1.80 1.55 1.55
D (Å) 0.223 0.15 0.15 0.30 0.20 0.15 0.15 0.25 0.25

properties (for instance binding and elastic features) are
concerned they have only been able to conclude that it has
a high melting temperature (∼2670 K [36]) and that its bulk
modulus is slightly larger than that of SiC (B = 233 GPa) [40].
Given this situation, proper testing of the transferability of the
potential against experiments cannot be done, and the fitting
database mainly comprises values obtained using our own DFT
calculations.

Second nearest neighbour interactions, i.e. Be–Be
interactions, were included in the CsCl structure as well as
in the antifluorite structure. This means that, in principle,
one could fit the Be–C potential so as to reproduce the Be–C
structures with only 1nn interactions first, and then tune the
pure Be potential to get the antifluorite and CsCl structures
correct. The fitting was, however, done simultaneously for both
parameter sets and it turned out to be quite difficult to preserve
the good features of Be–Be I while at the same time trying to
get a decent Be–C potential.

The short-ranged character of the ABOP scheme could
also add to the difficulties of encapsulating ionic interactions
that are long-ranged, but it has been shown by extensive testing
that the ABOP formalism is adequate for mimicking ionic
systems such as gallium nitride even without additional long-
range or charge-transfer terms [41].

2.3.3. Be–H. As we had to construct two different Be–
Be potentials, we also constructed a Be–H potential for each
of them. For a Be–H potential intended for bombardment
simulation several aspects need to be considered. After the
incident hydrogen has entered the bulk of the Be, the energetics
and the geometry of the movement of the incident atom and the
defect structures it ends up in are most important, as studied
by Krimmel and Fähnle [42] and Ganchenkova et al [43].
The interaction with other defects, accumulation of hydrogen
and surface effects are of course of interest but have not been
studied much in the literature. Small Be–H molecules, which
determine the forms of the sputtered species, were studied
using DFT by Allouche [44]. We fitted the potential to data for
Be–Hn-molecules and to energetics of the single H interstitial
in Be.

3. Results and discussion

3.1. Beryllium

3.1.1. DFT data. The properties of the Be dimer as obtained
from the GGA DFT calculations are found in table 2. The same
table also includes the results of bulk property calculations of
Be in the diamond, fcc, bcc and the ground state structure hcp.

When compared to experimental values, the dimer bond
length and its vibration frequency are well reproduced. We
did not, however, reproduce the weak low temperature bond
strength, which is a problem also encountered in other DFT
calculations (e.g. [45, 46]).

The experimental properties of hcp-Be are closely
reproduced, the only exception being the cohesive energy,
which the DFT calculations overestimate when compared to
experimental values. The GGA overestimation was 0.39 eV
and the LDA 0.88 eV. Due to this, the cohesive energies of
all phases were modified before including them in the fitting
database. This was done by adding the calculated energy
differences relative to the hcp phase, Ei

coh,calc − Ehcp
coh,calc, to

the experimental value of Ehcp
coh,exp = 3.32 eV/atom. The

motivation behind shifting the energies of all phases stems
from the fact that although DFT calculations of cohesive
energies are known to be subject to systematic errors, the
energy differences are usually correct. A similar correction
was made to the lattice constants, where each constant was
scaled with the factor V hcp

DFT/V hcp
Exp . No modification was made

to the dimer properties, since we did not make any attempt to
fit the dimer.

3.1.2. Fitted properties. Figure 1 is an illustration of the
agreement between the analytical potentials and the reference
data. The bcc and hcp phases deviate from the straight line
corresponding to the Pauling relation, equation (8), since 2nn
interactions were included in the bcc calculations and two
different bond lengths (one for the six basal neighbours and
one for the six non-basal ones) were considered in the hcp
structure. The difference stems from the non-ideal c/a ratio.
An overall good agreement between the Be–Be I potential
(circles) for all the phases is found, but neither the dimer bond
length nor its strength could be reproduced.
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Table 2. Properties of the beryllium dimer and bulk phases (both hypothetical and existing ones) as obtained from experiments, DFT
calculations and using the analytical potentials derived in this work. For the hexagonal close-packed structure, also values obtained with
literature potentials are included. (For the potentials found in [14, 16, 17], only available reported values are added). The notation is as
follows: ωe, vibration frequency; r0, bond length; Ecoh, cohesive energy; a, lattice parameter; V0, atomic volume; B, bulk modulus; B ′,
pressure derivative of the bulk modulus. For the DFT calculations in this work, shifted values for Ecoh and r0 are given (see text).

DFT ABOP Other potentials

Experiment Others
This
work Be–Be I Be–Be II BB [14] IGA [15] BAS [16] HU [17] U2 [18]

Dimer Be2

r0 (Å) 2.45a 2.45b 2.43 2.04 2.08
Ecoh (eV/atom) −0.05 (77 K)a,

−0.31 (298 K)c
−0.21b −0.23 −0.59 −0.52

ωe (cm−1) 275.8a 244.0b 245 481 459

Graphite (gra, A9, P63/mmc, no. 194)
a (Å) 2.14 2.10 2.11
Ecoh (eV/atom) −1.25 −1.41 −1.43
B (GPa) — 1.73 1.81
B ′ — 3.99 3.75

Diamond (dia, A4, Fd 3̄m, no. 227)
a (Å) 4.94 4.93 4.97
Ecoh (eV/atom) −1.73 −1.71 −1.73
B (GPa) 45.1 30.3 31.4
B ′ 3.68 4.00 3.74

Simple cubic (sc, Ah, Pm3̄m, no. 221)
a (Å) 2.20 2.18 2.20
Ecoh (eV/atom) −2.33 −2.31 −2.27
B (GPa) 75.7 58.8 61.9
B ′ 3.24 4.08 3.81

Body centred cubic (bcc, A2, Im3̄m, no. 229)
a (Å) 2.55 (1523 K)d 2.48 2.50 2.42
Ecoh (eV/atom) −3.22 −3.27 −3.58
B (GPa) 109.5e 127.2 335.3 934.9
B ′ 3.41 −1.64 6.86

Face centred cubic (fcc, A1, Fm3̄m, no. 225)
a (Å) 3.18 3.23 3.25
Ecoh (eV/atom) −3.24 −3.16 −3.56
B (GPa) 107.6e 123.8 114.3 132.1
B ′ 3.45 4.15 3.87

Hexagonal close-packed (hcp, A3, P63/mmc, no. 194)
a (Å) 2.2856 (293 K)d 2.27e 2.289 2.30 2.32 2.25 2.285 2.278 2.289 2.26
c/a 1.5677 (293 K)d 1.573e 1.566 1.572 1.558 1.633 1.571 1.568 1.568 1.64
Ecoh (eV/atom) −3.32f, −3.36a −3.60g −3.32 −3.32 −3.62 −3.60 −3.31 −3.43 −3.32 −3.24

V0 (Å
3
/atom) 8.11 (293 K)d 7.92e 7.93 8.27 8.52 8.05 8.12 8.03 8.14 8.20

B (GPa) 109.88h, 116.8i 122e 126.3 120.2 134.4 — 137.5 111.7 — 263.8
B ′ 3.584h, 4.6j 3.306e 3.31 4.16 3.88 — 0.46 — — 3.12

a Reference [70]. b Reference [46]. c Reference [71]. d Reference [36]. e Reference [39]. The bulk moduli for bcc and fcc are determined
from the relation B = (c11 + 2c12)/3. f Reference [72]. g Reference [73]. h Reference [37]. i Reference [74]. j Reference [75].

The same comparison can be done with the Be–Be II
potential (squares in figure 1), resulting in a somewhat poorer
agreement. All the cohesive energies except for that of the
diamond and sc phases are now overestimated and similar to
the values obtained from the DFT calculations (table 2). This
overshooting was, however, necessary to get a good Be–C
potential.

Additional Be bulk properties as predicted by the two
ABOP potentials are found in table 2, which also illuminates
the better performance of Be–Be I. The bulk modulus and its
pressure derivative agree with the reference data for almost

all phases, the only exception being the bcc phase for which
the modulus is more than twice as large within Be–Be I. Be–
Be II predicts an even higher value. The Be–Be I version
of the potential shows a negative value for the pressure
derivative of the modulus, although the DFT calculations
indicate otherwise. Also included in the table are values as
given by the literature Be potentials. The MEAM potentials
BAS and HU, as well as BB, could not be easily implemented
in the same code as the other potentials, and hence we
restrict the comparison with those to the values reported in the
literature.

5
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Table 3. Elastic constants of hexagonal close-packed Be. Values obtained in experiments, with DFT calculations and by using the analytical
potentials derived in this work are included.

Experiment DFT ABOP

Ref. [39] Ref. [74] Ref. [75] This work Be–Be I Be–Be II

c11 (GPa) 293.6 295.4 300.8 302.7 280.5 233.6
c12 (GPa) 26.8 25.9 14.1 29.4 58.6 83.0
c13 (GPa) 14.0 −1.0 7.1 16 13.5 82.1
c33 (GPa) 356.7 356.1 359.5 368 349.7 248.0
c44 (GPa) 166.2 170.6 160.2 166.9 198.2 175.4

Figure 1. Semilogarithmic plot of the energy–bond relation for
different beryllium phases. The fitting data are scaled DFT data (see
text). The scaling was done in order to fit the ground structure hcp to
experimental properties. The circles show values predicted by the
bond-order potential (ABOP) Be–Be I, the squares are the Be–Be II
potential, and the lines are the Pauling relation with parameters of
each version.

The most important structure is hcp, which retains its
status as the ground state structure in both potentials of this
work. The c/a ratio is, as is should be, smaller than the ideal
one of

√
8/3 ≈ 1.63 and the bulk moduli are within reasonable

limits from the experimental values. Contrary to the other
literature Be potentials, the pair potential U2 cannot reproduce
the small c/a ratio and overestimates the bulk modulus.

The calculated Be elastic constants are shown in table 3.
Be–Be I is seen to reproduce them excellently, whereas the
deviations are slightly larger within Be–Be II.

3.1.3. Tested properties. The melting temperature was
determined by simulating a solid–liquid interface at zero
pressure and different temperatures [47]. The melting
temperature was defined as the temperature at which the system
was in equilibrium, i.e. when the fractions of solid and liquid
parts remained constant. The simulations were performed with
a simulation cell of 1800 atoms for 50 ps. Potential Be–Be I
predicts a melting temperature of 1550 ± 50 K, which agrees
well with the experimental value of 1560 K. The melting point
within Be–Be II is higher, about 2600 ± 50 K. In U2, the
melting point was also estimated to 2600 ± 50 K and in IGA
2150 ± 50 K.

Figure 2. The volumetric thermal expansion of Be and Be2C.

Figure 4 illustrates the 300 K isotherm of hcp-Be with both
Be–Be I and Be–Be II as compared to two experiments [48, 49]
and DFT calculations [39]. The isotherm of Be–Be II follows
the shock-wave experiment of Nakano et al [48] (Exp. 1 in the
figure) at low pressures and the compressibility within Be–Be
I lies between the two experiments at all pressures.

When heated, Be exhibits a non-monotonic volumetric
expansion (see figure 2). According to Be–Be I, Be
expands until about 500 K, when it compresses at the
same rate until melting. A negative volumetric thermal
expansion is seen at all temperatures for Be–Be II. Contrary
to experimental observations (e.g. [50]), the c/a ratio
increases with temperature in both versions, although the two
dimensions (perpendicular and parallel to the (0001)-axis)
behave anisotropically: in Be–Be I the perpendicular axis
increases and compresses in the same way as the volume,
whereas the parallel dimension increases at all temperatures.
In Be–Be II it is the c-axis that expands non-monotonically:
it grows until 300 K when it starts to diminish. The a-axis,
on the other hand, diminishes as a function of temperature.
The expansion coefficients are found in table 5, where they are
compared to experimental values and estimations using other
Be potentials.

Point defect formation energies and binding energies for
the ABOPs are found in table 6. The formation energies were
calculated according to

Ef = Edef(N) − N Ecoh, (9)

6



J. Phys.: Condens. Matter 21 (2009) 445002 C Björkas et al

Figure 3. High symmetry interstitial positions in the hexagonal
lattice. T stands for tetrahedral, O for octahedral, C for crowdion, and
BT, BO and BC for the corresponding basal positions. The split and
basal split configurations have been left out for reasons of clarity.

where Edef(N) is the energy of the cell with a total of N atoms
including the defect (interstitial or vacancy) and Ecoh is the
energy of one atom in a perfect cell. The divacancy binding
energies were estimated through

Eb = 2E s
f − Edivac

f , (10)

where E s
f and Edivac

f are the formation energy of a single
vacancy and a divacancy, respectively. The simulations were
done at zero pressure and 0 K.

Several different interstitial configurations were studied
(see figure 3 for an illustration of the positions), but only
a couple of them (basal octahedral (BO) and crowdion (C))
are stable for the potentials in this work, BO being the most
stable. Hence, both the ABOP potentials have the right
ground state interstitial configuration when compared to the
DFT calculations of Ganchenkova et al [43]. However, these
calculations indicate that all but the basal crowdion (BC) and
basal tetrahedral (BT) configurations are stable.

The most stable interstitial configuration in the IGA
potential is the C structure, which has a large formation energy
(8 eV). As pointed out in [15], the absolute values for the
interstitials are governed by interactions at short ranges, and
since this potential was not fitted for such conditions, the
formation energies are not expected to be reasonable. A short-
range addition for the potential could change the situation.
The pair potential U2, on the other hand, does surprisingly
well in describing the interstitials when compared to DFT
calculations, since it predicts the BO to be the most stable
with a formation energy of 5.10 eV. In the HU potential, the
only stable configuration is BS, with a formation energy of
2.96 eV [17].

When looking at the vacancy energetics, disagreements
with the DFT results and the ABOPs are found. The

Figure 4. The 300 K isotherm of Be as predicted by the two
potentials of this work, by DFT calculations of [39] and by two
experiments. Exp. 1 is from [48] and Exp. 2 (room temperature) is
from [49].

ABOPs cannot reproduce the low DFT formation energy of
a single vacancy nor the different (in plane and out of plane
configurations) divacancy ones. (The experimental value for
the vacancy formation is, however, not clearly determined, see
e.g. [51] for a discussion.) Moreover, contrary to the same
calculations, the divacancies are stable, although they have a
very small binding energy.

The divacancy binding energies are also positive within
all the other Be potentials (IGA, BAS, HU and U2). A vacancy
formation energy of 1.13 eV has been used in the fitting of
these potentials, the exception being the U2 potential, where
this energy is calculated to be 3.10 eV. In U2, the divacancy
binding energies are 5.89 and 5.83 eV for the in-plane and out-
of-plane divacancies, respectively, which is about three times
larger than the corresponding DFT values.

The mobility activation of a self-interstitial atom (SIA) in
Be was calculated by following the mean square displacement
〈R2〉 for t = 10 ns and then calculating the diffusivity D using
the atomistic definition 〈R2〉 = 6Dt . An Arrhenius fit was
made to the diffusivity data to obtain the activation energy. The
diffusion simulations were done in a cell with constant volume
(the equilibrium lattice constant at each temperature was used),
and the temperature was controlled only during the first 50 ps
of the runs. The temperature range was 500–1100 K. The
energies and diffusion prefactors were E I

A = 0.72 ± 0.01 eV,
DI

0 = (9.6 ± 0.6) × 10−2 cm2 s−1 and E II
A = 0.73 ± 0.01 eV,

DII
0 = (7.6 ± 0.4) × 10−3 cm2 s−1 for Be–Be I and Be–Be II,

respectively.
Table 7 shows surface energies, including available DFT

values. The energies were calculated following the method
of [52], i.e. σi = (Ebulk − E surf

i )/Nsurf/2, where i is the surface
of interest, Ebulk is the total energy of the simulation cell with
periodic boundaries, E surf

i is the energy of the cell with open
surfaces and Nsurf is the number of surface atoms. The total
number of atoms used in these simulations was 3072.

Both ABOP potentials are seen to agree with the DFT
values for the (0001) surface. Although no values for the other

7
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Figure 5. The phonon dispersion curves for hcp-Be according to
DFT calculations, experiments [53] and the Be–Be II potential.

surfaces exist for comparison, the ABOP predictions can be
considered realistic since both (11̄00) and (21̄00) surfaces are
higher in energy than the close-packed (0001) surface. The
other Be potentials also give reasonable values, but the energy
of the (0001) surface in the IGA potential is slightly negative.

The results of the phonon dispersion calculations are
shown in figure 5 in comparison with experimental [53] and
DFT results. The overall agreement is good with the biggest
deviations on the order of 2 THz at the M-point.

3.2. Be–C

3.2.1. DFT data. The results of the Be–C calculations are
found in table 4 together with the dimer properties. As opposed
to the pure Be case, the calculated cohesive energy of Be2C is
not overestimated when compared to the experimental values,
although the experimental uncertainties are large. An excellent
agreement with the lattice constant is also seen. But, due to
a lack of data, no other comparisons to experimental values
can be done. Similarities are, however, found when comparing
the bulk modulus of Be2C and its pressure derivative with
earlier DFT calculations. Our calculations also show that the
antifluorite phase is the only structure out of several different
ones (CsCl, NaCl, ZnS, L10, L12—both Be3C and BeC3) with
a negative formation energy. This is line with the fact no phase
other than the antifluorite one has been observed.

3.2.2. Fitted properties. How well the ABOP reproduces
the reference data of different phases can be seen in table 4.
The absence of experimental data and the few literature ab
initio data clearly illustrate the difficulty of assessing the Be–C
potential behaviour. Many difficulties were found when fitting
the antifluorite structure, and a good Be–C fit to the reference
data was obtainable only at the expense of an acceptable Be
potential.

With this potential, the antifluorite structure is the most
stable structure against mixing, its bulk modulus and pressure
derivative agree well with the calculated values, and the elastic
constants are of the right order. It was, however, not possible
to reproduce exact values of the elastic constants. The lattice

constant is also slightly larger than the experimental value,
and the cohesive energy is somewhat smaller. Experimental
values for the cohesive energy can be obtained by considering
the measured values of the heat of formation of Be2C
(−92.5 ± 15.7 kJ mol−1 [54] and −117.2 kJ mol−1 [55])
and the cohesive energy of the constituents. With the two
different heat values, we arrive at energies of −16.8 ±
0.6 and −17.55 eV/f.u., which suggests that the ABOP
(−16.02 eV/f.u.) only makes a small underestimation of 2–
9%. (See appendix B for details of the calculation of the
formation energy.)

The NaCl structure is not stable in this potential, but
reconstructs into a crystal with positive formation enthalpy.
Likewise, the ZnS structure relaxes into a deformed structure
(containing grain boundaries) with a small, but positive,
formation energy. As in the DFT calculations, we checked
several other crystal structures as well, but only the Be2C
structure showed a negative formation enthalpy according to
the ABOP.

3.2.3. Tested properties. The melting point of Be2C was
determined following the same procedure as in the beryllium
case (see section 3.1.3). A simulation cell of 1596 atoms was
used. The resulting melting temperature of 3200±50 K agrees
fairly well with the observed one of 2670 K [36].

Be2C expands thermally at a rate of 4.5 × 10−6 K−1,
which is in quite good agreement with the experimental value
of 5.8 × 10−6 K−1 [56].

A check whether any spurious minima exist was done
by slowly quenching a simulation cell containing completely
molten Be2C (4096 Be and 2048 C atoms) or randomly
distributed atoms. The latter cell was constructed by randomly
placing 6144 Be and C atoms (ratio 2:1) in a cube of side length
60 Å. Different runs were performed, with cell temperatures
starting from well above the melting temperature and gradually
being cooled down to 0 K at a rate of 2–10 × 10−4 K fs−1. The
temperature was held at 4000 K for 20 ps to ensure random
positions of the melt. When a temperature of about 2500 K
was reached, a phase transition was observed in all cases. This
transition is observed as a sudden drop in the total energy,
which is plotted as a function of the simulation time in figure 6.
As seen, the antifluorite structure was eventually reached
independently of the cooling rate. A few defects or stacking
faults remained in the simulations (see figure 7(b)), explaining
the differences in the final energies of the quenched cells and
the ideal cohesive energy in figure 6. The time evolution of the
radial distribution function for cooling a random distribution
at a rate of 0.001 fs K−1 is found in figure 8. In this case, the
antifluorite phase transition takes place after about 2 ns.

We also noted that on quenching stoichiometric BeC,
the melt is segregated into regions of amorphous three-fold
coordinated C and Be2C (see figure 7(c)).

The vacancy formation energies of Be2C were calculated
following the method described in appendix B, resulting in
a Be vacancy formation energy of 0.73 eV and a C vacancy
formation energy of 3.40 eV.

The phonon dispersion curve for Be2C as obtained from
the ABOP is shown in figure 9 in comparison with results from

8
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Table 4. Properties of the Be–C dimer and bulk phases (including hypothetical ones) as obtained from experiments, DFT calculations and
using the analytical potential (ABOP) derived in this work. The two different values taken from [76] correspond to different DFT calculations.
The notation is as follows: ωe, vibration frequency; r0, bond length; Ecoh, cohesive energy; Ef, formation energy; a, lattice parameter; V0,
atomic volume; B, bulk modulus; B ′, pressure derivative of the bulk modulus; ci j , elastic constants.

DFT

Experiment Ref. [76] Ref. [77] This work ABOP

Dimer BeC
r0 (Å) 1.68 1.72
Ecoh (eV/f.u.) −2.94 −3.90
ωe (cm−1) 582 1020

L10 (P4/mmm, no. 123)
a (Å) 2.22 2.38
c/a 1.24 1.41
Ecoh (eV/f.u.) −10.10 −10.62
Ef (eV/f.u.) 2.72 0.38
B (GPa) 172.5 1060.5
B ′ 3.59 2.81

Be3C (L12, Pm3̄m, no. 221)
a (Å) 3.00 3.09
Ecoh (eV/f.u.) −18.14 −18.00
Ef (eV/f.u.) 2.13 0.24
B (GPa) 163.6 220.3
B ′ 3.75 4.33

BeC3 (L12, Pm3̄m, no. 221)
a (Å) 3.02 2.82
Ecoh (eV/f.u.) −19.79 −17.39
Ef (eV/f.u.) 11.20 8.36
B (GPa) 169.426 417.6
B ′ 3.91 4.94

Zinc blende (ZnS, B3, F 4̄3m, no. 216)
a (Å) 4.16 —
Ecoh (eV/f.u.) −10.06 —
Ef (eV/f.u.) 2.75 —
B (GPa) 135.4 —
B ′ 3.43 —

Rock salt (NaCl, B1, Fm3̄m, no. 225)
a (Å) 3.87 —
Ecoh (eV/f.u.) −10.41 —
Ef (eV/f.u.) 2.40 —
B (GPa) 181.7 —
B ′ 3.59 —

Caesium chloride (CsCl, B2, Pm3̄m, no. 221)
a (Å) 2.42 2.38
Ecoh (eV/f.u.) −9.93 −10.62
Ef (eV/f.u.) 2.88 0.38
B (GPa) 176.5 341.3
B ′ 3.38 −0.19

Antifluorite Be2C (C1, Fm3̄m, no. 225)
a (Å) 4.33a, 4.342b 4.27, 4.29 4.27 4.33 4.57
Ecoh (eV/f.u.) −16.8 ± 0.6c, −17.55d −17.58, −18.09 −18.1 −17.46 −16.02
Ef (eV/f.u.) −2.9 ± 0.5e, −1.2f −1.39 −1.31
V0 (Å

3
/atom) 6.77a, 6.82b 6.49, 6.58 6.49 6.77 7.96

B (GPa) 216, 213 217.74 205.7 227.3
B ′ 3.5, 4.18 3.63 3.34 4.22
c11 (GPa) 438.3 570.1 331.6
c12 (GPa) 106.43 15.1 175.2
c44 (GPa) 165.95 194.7 204.7

a Reference [78]. b Reference [79]. c Obtained with formation energies for Be2C from [54], and for Be and C (graphite) from [55].
d Obtained with formation energies for Be, C (graphite) and Be2C from [55]. e Reference [54]. f Reference [55].
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Table 5. Room temperature Be thermal expansion coefficients. The linear expansion coefficients for Be are given as perpendicular α⊥ and
parallel α‖ to the (0001)-axis (in K−1). The volumetric coefficient is expressed as αV (in K−1). Unless specified, the measurements were done
at 300 K.

ABOP Other potentials Experiment

Be Be–Be I Be–Be II IGA [15] U2 [18] Ref. [50] Ref. [80]

α⊥ × 106 4.8 −26.6 21.1 12.8 7.7 12.6
36.5 (100 K)

α‖ × 106 30.0 −1.2 23.4 5.4 10.6 9.1
−6.0 (500 K)

αV × 106 38.2 −52.5 65.8 31.9 29.0

Figure 6. The total energy of Be2C at temperatures going from 4000
to 0 K with different cooling rates. The phase transition to the
antifluorite structure is seen as a sudden drop in the energy. Both a
random distribution and melted Be2C were used as the initial
structure.

our DFT calculations. The agreement is encouraging, although
some larger deviations for the optical branches half-way along
the 	–X and 	–L lines must be acknowledged.

3.3. Be–H

3.3.1. Fitted properties. Certain properties of the molecules
given by DFT cannot be reproduced using a Tersoff type

Figure 8. The radial distribution of Be2C as a function of time,
starting from 4096 Be and 2048 randomly distributed atoms. The
temperature starts from T = 4000 K and goes to 0 K at a rate of
0.001 K fs−1. The first peak corresponds to Be–C nearest neighbours
and the second peak is Be–Be neighbours.

potential, at least without interaction between the hydrogen
atoms, which are farther apart than the cutoff of the well
established H–H potential we use. For instance, according to
DFT, the bond lengths for BeH2 are smaller than the dimer
bond length and larger for BeH3, which is not possible to
reproduce with the Tersoff formalism. The total energy of
BeH2 cannot be larger than 2D0, while DFT gives it as
∼2.5D0. Modifying the formalism to allow for this was,

Figure 7. (a) The ideal antifluorite Be2C structure. (b) The final structure after quenching from T = 4000 to 0 K at a rate of 0.5 K ps−1 with a
ratio Be:C = 2:1 in the initial melt. Both (a) and (b) illustrate the antifluorite structure while (c) shows the final structure after quenching a
random melt with Be:C = 1:1. Regions of amorphous three-fold coordinated carbon and Be2C are seen.
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Table 6. Point defect energies in Be as predicted by the two
potentials in this work and by DFT calculations. The energies are
given in eV. 2VAA stands for a divacancy in a basal plane and 2VAB

for two vacancies out of plane. The studied interstitial configurations
are crowdion (C), octahedral (O), split (S), tetrahedral (T), and the
corresponding basal ones (indicated with a B). Ef, formation energy
in eV; Eb, binding energy in eV.

ABOP DFT

Be–Be I Be–Be II Ref. [43] Ref. [51] Ref. [42]

Interstitials
EC

f 2.91 2.84 4.39
EO

f Unstable Unstable 5.24
ES

f Unstable Unstable 5.29
ET

f Unstable Unstable 5.22
EBC

f Unstable Unstable Unstable
EBO

f 2.55 2.29 4.20
EBS

f Unstable Unstable 4.30
EBT

f Unstable Unstable Unstable

Vacancies
Ef 1.68 2.04 0.81 1.13
E2VAA

f 3.19 3.83 1.96
E2VAB

f 3.08 3.80 2.07
E2VAA

b 0.16 0.24 −0.26
E2VAB

b 0.27 0.26 −0.37

however, not desired, as the binding energies and bond lengths
are still acceptable with the formalism used for all other
interactions in the Be–C–W–H system.

According to DFT, and reproduced by the Be–Be
potentials, the self-interstitial atom in pure beryllium is in
the BO position in the ground state (table 6). For interstitial
H, DFT gives a different position, BT, also known as the
hexahedral position [42, 43, 57]. The positions are shown
in figure 3. The calculations by Ganchenkova give a higher
formation energy than those by Krimmel, about 1.6 eV and
0.8 eV, respectively, and experiments with tritium give about
1 eV [58].

Finding a parameter set with good formation energies for
the BT and octahedral (O) interstitial positions was relatively
easy, but the ground state was always an off-plane position
above or below the BT position, in the tetrahedral (T) position,
or between T and BT. Forcing the potentials to keep the ground
state as BT (both in energy and position) led to high migration
barriers. The best parameter set to give the correct ground state
had a migration barrier of about 3 eV for BT to O migration,
which is unacceptably high compared to 0.38 eV according to
DFT [43]. Thus we decided to accept that the ground state is
in the wrong position in order to keep both the defect energies
and migration energies reasonable.

Figure 9. The phonon dispersion curves for Be2C (CaF2 structure)
according to DFT calculations and the Be–C potential.

Table 8. DFT data and results using the potentials for H defects in
Be. The formation energies are given in eV. The interstitial
configurations are basal tetrahedral (BT) and octahedral (O). The
ground state with the potentials is the tetrahedral (T) position.

ABOP DFT

Be–H I Be–H II Ref. [57] Ref. [43]

Interstitials
EBT

f 1.22 1.35 0.8 1.58
EO

f 1.46 1.71 Unstable 1.79
Ground state 1.04 1.17 0.8 1.58

BT to O migration barrier
Em 0.43 0.45 0.38

The potential parameters are presented in table 1 and
a comparison with DFT data in tables 8 and 9. It could
be possible to improve the potential by refitting the Be–Be
potentials with Be–H in mind. This, however, puts limitations
on the pure Be and Be–C potentials. Another option is to
modify the potential formalism; however, as explained above
it is preferable to keep the same formalism for all elements.
The limited ab initio or experimental data available makes it
difficult to benchmark a new formalism.

The diffusion of H in Be is described within the Be–H I
potential by the equation D = 3.3 × 10−8e−0.08 eV/kT m2 s−1.
The ranges in the experimentally obtained prefactors D0 and
activation energies EA are large; D0 values from 6.7 × 10−9 to
9×10−12 m2 s−1 and EA values from 0.15 to 0.29 eV have been
reported [4]. The potential thus overestimates the prefactor and
underestimates the activation energy slightly.

Table 7. Surface energies (in eV/atom) in Be as predicted by the two Be potentials in this work, by literature potentials and by DFT
calculations.

ABOP Other potentials DFT

Surface Be–Be I Be–Be II IGA [15] BAS [16] HU [17] U2 [18] Ref. [81] Ref. [52]

(0001) 0.58 0.64 −0.02 0.40 0.36 0.92 0.559, 0.573 0.54, 0.46
(11̄00) 1.70 1.71 0.39 2.41
(21̄1̄0) 1.22 1.25 0.19 1.88
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Table 9. DFT data and results using the potentials for Be–Hn

molecules. The binding energies are given in eV and bond lengths in
Å. Be–H3 C2v breaks up into H2 and Be with the potentials.

ABOP

Be–H I Be–H II DFT [44]

Be–H
Ec/atom −1.30 −1.30 −1.30
rb 1.34 1.34 1.34
Be–H2 linear
Ec/atom −1.65 −1.61 −2.13
rb 1.35 1.35 1.33
Be–H3 D3h
Ec/atom −1.31 −1.46 −1.35
rb 1.41 1.40 1.47
Be–H3 C2v
Ec/atom — — −1.65
rb — — 1.47
Angle — — 53◦

4. Application of the beryllium potential

As an application of the Be potential, self-sputtering was
studied. Simulations of Be ions with energies in the range 20–
100 eV bombarding (0001) and (1̄1̄20) Be at normal incidence
were performed. One thousand cumulative simulations, at
a flux of 2.0 × 1028 m−2 s−1, were done at each energy,
and between every single bombardment the cell was shifted
in x and y directions so as to model uniform bombardment
of the surface. The temperature of the borders of the cell
(consisting of 3388 atoms) was controlled to 320 K and the
two bottommost layers were fixed to mimic an infinite lattice.
After each bombardment, the cell was relaxed for 5 ps at 320 K.

Snapshots of the simulations are seen in figures 10(a)–(d),
which illustrate 100 eV Be ions hitting (0001) Be. Defects are
seen to form and migrate collectively to the surface and form
an extra layer. This mechanism occurred several times during
the simulations, therefore preventing amorphization. Thus, Be
behaves as a typical metal which is hard to amorphize [59].

Regardless of the surface, no sputtering was seen at
20 eV and the yield is the same for both surfaces at 50 eV,
indicating that the self-sputtering threshold lies between these
two energies. At higher energies, bombardment of the (1̄1̄20)
surface results in a higher yield (see figure 11), which is
expected due to the larger distances between the (1̄1̄20) surface
atoms. The sputtering results of Ueda et al [18] are also added
to the figure, showing a similar picture.

To obtain experimental values that enable qualitative
comparison, one has to extrapolate from results obtained
with ion energies in the keV range and with polycrystalline
samples [60]. What further hinders exact comparison is that
the fluxes are a few orders of magnitude lower (typically
∼1020 m−2 s−1) and that the temperatures are higher (∼670 K)
in the experiments [61–63]. The maximum observed sputtering
yield, which is determined by a weight-loss method, is about
0.4 atoms/ion for ion energies of 1–5 keV. A downwards
extrapolation of the experimental data points indicates a yield
of 0.02–0.07 atoms/ion in the energy range 50–100 eV. This
agrees well with our simulated values.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Snapshots of the beryllium self-bombardment. The
incoming ion energies are 100 eV and the surface is (0001). The
movement of defects to the surface is seen in (a)–(e) and the build up
of extra surface layers is visible in (f).

A fit to the simulated values at low energies and to
experimental ones at higher energies was done, as seen in
figure 11. The Y (E0) formula of Eckstein et al [64] was used,
with constants Eth = 25 eV, q = 4.9 μ = 1 and λ = 99.
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Figure 11. The sputtering yield of Be self-bombardment. Different
surfaces result in different yields and the sputtering formula of
Eckstein et al [64] is fitted to the simulated as well as to high energy
experimental data [60]. The results of simulations by Ueda et al
in [18] are also added for comparison. The inset shows the yield at
low energies.

We also simulated the sputtering with the binary collision
code TRIM [65], and looked at the resulting yield for different
surface binding energies. For an energy of 3.32 eV, the
simulated yields agreed well with the experimental ones, but
in the lower ion energy range the yields were about three
times larger than the values obtained with MD. Using a surface
binding energy of 6 eV resulted in agreement on low ion
energies, but at keV energies the yields were lower than the
experimental values.

5. Conclusions

We have developed analytical bond-order potentials for Be–
C–H systems. These potentials are suitable for studies in
plasma–wall interactions in fusion reactors, since they are
able to model non-equilibrium phenomena such as sputtering
and the formation of mixed materials. The potentials were
fitted to an extensive database consisting of DFT calculations
of several structures as a complement to experimental data
from the literature. The Brenner hydrocarbon potentials are
used for the H–C interaction and two different Be potentials
were parametrized. One (Be–Be I) describes the pure
element and the other (Be–Be II) describes Be in Be–C. Both
model the elemental equilibrium properties well, but the point
defect energetics only fairly well, although the right stable
interstitial configuration is reproduced when compared to DFT
calculations. Be–Be I does also well in modelling the self-
sputtering mechanism, showing a yield and threshold energy

that agrees with experiments. A Be–H potential for each Be–
Be version was also parametrized, and these are able to model
Be–H molecules as well as H defects and migration in Be.
The only experimentally observed phase of Be–C is the ionic
antifluorite Be2C structure, which the Be–C potential captures
well. A random melt with Be:C = 2:1 crystallizes into the
Be2C structure and regions of three-fold bonded C and Be2C
are formed when the ratio is 1:1.

Acknowledgments

This work, supported by the European Communities under
the contract of Association between EURATOM-Tekes, was
carried out within the framework of the European Fusion
Development Agreement. The views and opinions expressed
herein do not necessarily reflect those of the European
Commission. Grants of computer time from CSC, the
IT Centre for Science in Espoo, Finland, are gratefully
acknowledged.

Appendix A. Modification of the repulsive potential

The repulsive part of the potentials was modified in
a manner previously used for Tersoff-like many-body
potentials [66, 8, 67]: a total potential VTot was constructed
by joining the original universal ZBL repulsive potential
VZBL(r) [68] with the equilibrium potential VEq(r) using

VTot(r) = VZBL(r)(1 − F(r)) + VEq(r)F(r), (A.1)

where VEq is the potential for states close to equilibrium
described in the main text and the Fermi function

F(r) = 1

1 + e−bf(r−rf)
. (A.2)

Note that the Fermi function is used here merely as a
function which smoothly goes from 1 to 0 in a relatively
narrow r interval, with no connection to the Fermi level of the
electrons of the solid. The values of the constants bf and rf are
manually chosen so that the potential is essentially unmodified
at the equilibrium and longer bonding distances, and that a
smooth fit at short separations with no spurious minima is
achieved for all realistic coordination numbers. The parameters
for each potential are found in table A.1, where the parameters
for C–C, C–H and H–H are those derived in [12].

Appendix B. Calculations of formation energies

The (free) energy/heat/enthalpy of formation of a substance
AmBn containing NA (NB) atoms of species A (B), with
NA/NB = m/n, can be defined as

Gf = GD − NAg(A) − NBg(B), (B.1)

Table A.1. Parameters for the repulsive potentials. The C–C, H–H and C–H parameters are taken from [12].

Be–Be I Be–Be II Be–C Be–H I Be–H II C–C H–H C–H

rf (Å) 0.8 0.8 0.7 0.8 0.8 0.6 0.35 0.5

bf (1 Å
−1

) 7 15 16 15 15 8 15 10
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when using the Gibbs free energy. Here GD is the energy of the
substance, g(A) is the Gibbs energy per atom (in the reference
state), also known as the chemical potential, μ(A) = g(A),
and correspondingly for B. Usually Gf is normalized to the
number N of formula units, which in this case equals N =
NA/m = NB/n.

At T = 0 and standard 1 atm pressure PV ≈ 0 and
the Gibbs energy equals the internal potential energy. If the
substance AmBn is formed from bulk elements the energy of
formation becomes

Gf = GD − NA Ec(A) − NB Ec(B), (B.2)

where g = Ec is the cohesive energy. Gf is now the
net energy cost of making AmBn from pure bulk elements.
In the calculations of the heat of formation of Be2C, the
reference states of the bulk elements were graphite for C
(EC,gra

c = −7.3768 eV/atom [7]) and hcp for Be (EBe,hcp
c =

−3.6234 eV/atom).
Concerning defects, e.g. a vacancy, the formation energy

is defined as in (B.1). However, there are some important
differences. Consider a vacancy formed by removing one atom
of element A which stays in the same system and does not enter
an external particle reservoir of the pure element. Now GD

equals the energy of the cell with the vacancy, NA (NB) is the
number of atoms of element A (B) in the defective cell, and
g(A) (g(B)) is the energy per atom of element A (B) in a cell
containing perfect AmBn .

The cost of creating a vacancy of type A equals the energy
difference between a defective cell and a perfect cell. To
make sense physically, this defective cell containing a type A
vacancy must also contain the removed A atom, either as an
interstitial or as an adatom. However, taking these defects into
account makes a simple definition of the energy of formation
of a vacancy impossible, since the definition would at the same
time include the energy of formation of an interstitial or an
adatom.

Let us now summarize the energy of formation of a
vacancy (vac.) and an interstitial (int.) of type A using the
above recipe:

GA−vac.
f = GA−vac.

D − (NA − 1)g(A) − NBg(B), (B.3)

GA−int.
f = GA−int.

D − (NA + 1)g(A) − NBg(B). (B.4)

Here NA is the number of atoms of type A in the perfect
cell, and similarly for B. These equations are in line with the
ideas in [69]. The sum of the two equations above is

GA−vac.
f + GA−int.

f = GA−vac.
D + GA−int.

D − 2NAg(A)

−2NBg(B) (B.5)

= GA−vac.
D + GA−int.

D − 2G(AmBn). (B.6)

This is indeed the net energy cost of creating a type A
vacancy and its associated interstitial, given as the energy
difference between a defective cell and a perfect cell. In
other words, the definition in (B.1) is consistent and physically
meaningful, although this does not appear so at first.

In the calculation of a Be and C vacancy in Be2C, a
simulation cell containing 1500 atoms and one vacancy (NBe =

1000 = NA, NC = 500 = NB) was used. The pressure and
temperature were controlled to 0 bar and 0 K, hence gA = gBe

and gB = gC equals the potential energy of Be and C in
perfect Be2C, respectively. Here gBe = −5.414 eV/atom and
gC = −5.1861 eV/atom.
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